spring block system is placed on a rough horizontal floor. The block is pulled towards right to give spring some elongation and released. the block will have maximum velocity when
the spring force becomes zero
the acceleration of block becomes zero
the net force becomes zero
Both $(b)$ and $(c)$
Initially spring is in natural length and both blocks are in rest condition. Then determine Maximum extension is spring. $k=20 N / M$
Two springs $A$ and $B$ having spring constant $K_{A}$ and $K_{B}\left(K_{A}=2 K_{B}\right)$ are stretched by applying force of equal magnitude. If energy stored in spring $A$ is $E_{A}$ then energy stored in $B$ will be
A spring with spring constant $k $ is extended from $x = 0$to$x = {x_1}$. The work done will be
slowing down of neutrons: In a nuclear reactor a neutron of high speed (typically $10^{7}\; m s ^{-1}$ ) must be slowed to $10^{3}\; m s ^{-1}$ so that it can have a high probability of interacting with isotope $^{235} _{92} U$ and causing it to fission. Show that a neutron can lose most of its kinetic energy In an elastic collision with a light nuclel like deuterlum or carbon which has a mass of only a few times the neutron mass. The material making up the light nuclel, usually heavy water $\left( D _{2} O \right)$ or graphite, is called a moderator.
A spring of force constant $800\, N/m$ has an extension of $5\,cm$. The work done in extending it from $ 5\,cm$ to $15 \,cm$ is ............. $\mathrm{J}$